Kernel Techniques: From Machine Learning to Meshless Methods
نویسندگان
چکیده
Kernels are valuable tools in various fields of Numerical Analysis, including approximation, interpolation, meshless methods for solving partial differential equations, neural networks, and Machine Learning. This contribution explains why and how kernels are applied in these disciplines. It uncovers the links between them, as far as they are related to kernel techniques. It addresses non-expert readers and focuses on practical guidelines for using kernels in applications.
منابع مشابه
Special Techniques for Kernel-Based Reconstruction of Functions from Meshless Data
Here are three short stories on meshless methods using kernel techniques: • Any well–posed linear problem in the native space NΦ of a symmetric (strictly) positive definite kernel Φ can be successfully solved by symmetric meshless collocation. This applies to a large variety of standard linear PDE problems. • Relaxing interpolation conditions by allowing some small absolute error can significan...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملMultiscale Approximation and Reproducing Kernel Hilbert Space Methods
We consider reproducing kernels K : ⌦ ⇥ ⌦ ! R in multiscale series expansion form, i.e., kernels of the form K (x, y) = P ` 2N`P j2I`` ,j (x) `,j (y) with weightsànd structurally simple basis functions`,i. Here, we deal with basis functions such as polynomials or frame systems, where, for`2 N, the index set I ` is finite or countable. We derive relations between approximation properties of spac...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملتشخیص سرطان پستان با استفاده از برآورد ناپارمتری چگالی احتمال مبتنی بر روشهای هستهای
Introduction: Breast cancer is the most common cancer in women. An accurate and reliable system for early diagnosis of benign or malignant tumors seems necessary. We can design new methods using the results of FNA and data mining and machine learning techniques for early diagnosis of breast cancer which able to detection of breast cancer with high accuracy. Materials and Methods: In this study,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006